Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - start with the Axiom of Extensionality
The empty set
ssdisjdr
Metamath Proof Explorer
Description: Subset preserves disjointness. Deduction form of ssdisj .
Alternatively this could be proved with ineqcom in tandem with
ssdisjd . (Contributed by Zhi Wang , 7-Sep-2024)
Ref
Expression
Hypotheses
ssdisjd.1
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 )
ssdisjdr.2
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐵 ) = ∅ )
Assertion
ssdisjdr
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐴 ) = ∅ )
Proof
Step
Hyp
Ref
Expression
1
ssdisjd.1
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 )
2
ssdisjdr.2
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐵 ) = ∅ )
3
sslin
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∩ 𝐴 ) ⊆ ( 𝐶 ∩ 𝐵 ) )
4
1 3
syl
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐴 ) ⊆ ( 𝐶 ∩ 𝐵 ) )
5
sseq0
⊢ ( ( ( 𝐶 ∩ 𝐴 ) ⊆ ( 𝐶 ∩ 𝐵 ) ∧ ( 𝐶 ∩ 𝐵 ) = ∅ ) → ( 𝐶 ∩ 𝐴 ) = ∅ )
6
4 2 5
syl2anc
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐴 ) = ∅ )