Metamath Proof Explorer


Theorem ssdisjdr

Description: Subset preserves disjointness. Deduction form of ssdisj . Alternatively this could be proved with ineqcom in tandem with ssdisjd . (Contributed by Zhi Wang, 7-Sep-2024)

Ref Expression
Hypotheses ssdisjd.1 ( 𝜑𝐴𝐵 )
ssdisjdr.2 ( 𝜑 → ( 𝐶𝐵 ) = ∅ )
Assertion ssdisjdr ( 𝜑 → ( 𝐶𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ssdisjd.1 ( 𝜑𝐴𝐵 )
2 ssdisjdr.2 ( 𝜑 → ( 𝐶𝐵 ) = ∅ )
3 sslin ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )
4 1 3 syl ( 𝜑 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )
5 sseq0 ( ( ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) ∧ ( 𝐶𝐵 ) = ∅ ) → ( 𝐶𝐴 ) = ∅ )
6 4 2 5 syl2anc ( 𝜑 → ( 𝐶𝐴 ) = ∅ )