Step |
Hyp |
Ref |
Expression |
1 |
|
predisj.1 |
|- ( ph -> Fun F ) |
2 |
|
predisj.2 |
|- ( ph -> ( A i^i B ) = (/) ) |
3 |
|
predisj.3 |
|- ( ph -> S C_ ( `' F " A ) ) |
4 |
|
predisj.4 |
|- ( ph -> T C_ ( `' F " B ) ) |
5 |
|
inpreima |
|- ( Fun F -> ( `' F " ( A i^i B ) ) = ( ( `' F " A ) i^i ( `' F " B ) ) ) |
6 |
1 5
|
syl |
|- ( ph -> ( `' F " ( A i^i B ) ) = ( ( `' F " A ) i^i ( `' F " B ) ) ) |
7 |
2
|
imaeq2d |
|- ( ph -> ( `' F " ( A i^i B ) ) = ( `' F " (/) ) ) |
8 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
9 |
7 8
|
eqtrdi |
|- ( ph -> ( `' F " ( A i^i B ) ) = (/) ) |
10 |
6 9
|
eqtr3d |
|- ( ph -> ( ( `' F " A ) i^i ( `' F " B ) ) = (/) ) |
11 |
3 10
|
ssdisjd |
|- ( ph -> ( S i^i ( `' F " B ) ) = (/) ) |
12 |
4 11
|
ssdisjdr |
|- ( ph -> ( S i^i T ) = (/) ) |