Metamath Proof Explorer


Theorem predisj

Description: Preimages of disjoint sets are disjoint. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Hypotheses predisj.1
|- ( ph -> Fun F )
predisj.2
|- ( ph -> ( A i^i B ) = (/) )
predisj.3
|- ( ph -> S C_ ( `' F " A ) )
predisj.4
|- ( ph -> T C_ ( `' F " B ) )
Assertion predisj
|- ( ph -> ( S i^i T ) = (/) )

Proof

Step Hyp Ref Expression
1 predisj.1
 |-  ( ph -> Fun F )
2 predisj.2
 |-  ( ph -> ( A i^i B ) = (/) )
3 predisj.3
 |-  ( ph -> S C_ ( `' F " A ) )
4 predisj.4
 |-  ( ph -> T C_ ( `' F " B ) )
5 inpreima
 |-  ( Fun F -> ( `' F " ( A i^i B ) ) = ( ( `' F " A ) i^i ( `' F " B ) ) )
6 1 5 syl
 |-  ( ph -> ( `' F " ( A i^i B ) ) = ( ( `' F " A ) i^i ( `' F " B ) ) )
7 2 imaeq2d
 |-  ( ph -> ( `' F " ( A i^i B ) ) = ( `' F " (/) ) )
8 ima0
 |-  ( `' F " (/) ) = (/)
9 7 8 eqtrdi
 |-  ( ph -> ( `' F " ( A i^i B ) ) = (/) )
10 6 9 eqtr3d
 |-  ( ph -> ( ( `' F " A ) i^i ( `' F " B ) ) = (/) )
11 3 10 ssdisjd
 |-  ( ph -> ( S i^i ( `' F " B ) ) = (/) )
12 4 11 ssdisjdr
 |-  ( ph -> ( S i^i T ) = (/) )