Metamath Proof Explorer


Theorem disjimres

Description: Disjointness condition for restriction. (Contributed by Peter Mazsa, 27-Sep-2021)

Ref Expression
Assertion disjimres
|- ( Disj R -> Disj ( R |` A ) )

Proof

Step Hyp Ref Expression
1 resss
 |-  ( R |` A ) C_ R
2 1 disjssi
 |-  ( Disj R -> Disj ( R |` A ) )