Metamath Proof Explorer


Theorem disjsnxp

Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion disjsnxp
|- Disj_ j e. A ( { j } X. B )

Proof

Step Hyp Ref Expression
1 sndisj
 |-  Disj_ j e. A { j }
2 1 a1i
 |-  ( T. -> Disj_ j e. A { j } )
3 2 disjxp1
 |-  ( T. -> Disj_ j e. A ( { j } X. B ) )
4 3 mptru
 |-  Disj_ j e. A ( { j } X. B )