Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sndisj | |- Disj_ x e. A { x } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 | |- ( Disj_ x e. A { x } <-> A. y E* x ( x e. A /\ y e. { x } ) ) |
|
| 2 | moeq | |- E* x x = y |
|
| 3 | simpr | |- ( ( x e. A /\ y e. { x } ) -> y e. { x } ) |
|
| 4 | velsn | |- ( y e. { x } <-> y = x ) |
|
| 5 | 3 4 | sylib | |- ( ( x e. A /\ y e. { x } ) -> y = x ) |
| 6 | 5 | equcomd | |- ( ( x e. A /\ y e. { x } ) -> x = y ) |
| 7 | 6 | moimi | |- ( E* x x = y -> E* x ( x e. A /\ y e. { x } ) ) |
| 8 | 2 7 | ax-mp | |- E* x ( x e. A /\ y e. { x } ) |
| 9 | 1 8 | mpgbir | |- Disj_ x e. A { x } |