Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
sndisj
Next ⟩
0disj
Metamath Proof Explorer
Ascii
Unicode
Theorem
sndisj
Description:
Any collection of singletons is disjoint.
(Contributed by
Mario Carneiro
, 14-Nov-2016)
Ref
Expression
Assertion
sndisj
⊢
Disj
x
∈
A
x
Proof
Step
Hyp
Ref
Expression
1
dfdisj2
⊢
Disj
x
∈
A
x
↔
∀
y
∃
*
x
x
∈
A
∧
y
∈
x
2
moeq
⊢
∃
*
x
x
=
y
3
simpr
⊢
x
∈
A
∧
y
∈
x
→
y
∈
x
4
velsn
⊢
y
∈
x
↔
y
=
x
5
3
4
sylib
⊢
x
∈
A
∧
y
∈
x
→
y
=
x
6
5
equcomd
⊢
x
∈
A
∧
y
∈
x
→
x
=
y
7
6
moimi
⊢
∃
*
x
x
=
y
→
∃
*
x
x
∈
A
∧
y
∈
x
8
2
7
ax-mp
⊢
∃
*
x
x
∈
A
∧
y
∈
x
9
1
8
mpgbir
⊢
Disj
x
∈
A
x