Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjuniel.1 | |- ( ph -> Disj_ x e. A x ) |
|
| disjuniel.2 | |- ( ph -> B C_ A ) |
||
| disjuniel.3 | |- ( ph -> C e. ( A \ B ) ) |
||
| Assertion | disjuniel | |- ( ph -> ( U. B i^i C ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjuniel.1 | |- ( ph -> Disj_ x e. A x ) |
|
| 2 | disjuniel.2 | |- ( ph -> B C_ A ) |
|
| 3 | disjuniel.3 | |- ( ph -> C e. ( A \ B ) ) |
|
| 4 | uniiun | |- U. B = U_ x e. B x |
|
| 5 | 4 | ineq1i | |- ( U. B i^i C ) = ( U_ x e. B x i^i C ) |
| 6 | id | |- ( x = C -> x = C ) |
|
| 7 | 1 6 2 3 | disjiunel | |- ( ph -> ( U_ x e. B x i^i C ) = (/) ) |
| 8 | 5 7 | eqtrid | |- ( ph -> ( U. B i^i C ) = (/) ) |