Metamath Proof Explorer


Theorem disjuniel

Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses disjuniel.1
|- ( ph -> Disj_ x e. A x )
disjuniel.2
|- ( ph -> B C_ A )
disjuniel.3
|- ( ph -> C e. ( A \ B ) )
Assertion disjuniel
|- ( ph -> ( U. B i^i C ) = (/) )

Proof

Step Hyp Ref Expression
1 disjuniel.1
 |-  ( ph -> Disj_ x e. A x )
2 disjuniel.2
 |-  ( ph -> B C_ A )
3 disjuniel.3
 |-  ( ph -> C e. ( A \ B ) )
4 uniiun
 |-  U. B = U_ x e. B x
5 4 ineq1i
 |-  ( U. B i^i C ) = ( U_ x e. B x i^i C )
6 id
 |-  ( x = C -> x = C )
7 1 6 2 3 disjiunel
 |-  ( ph -> ( U_ x e. B x i^i C ) = (/) )
8 5 7 syl5eq
 |-  ( ph -> ( U. B i^i C ) = (/) )