| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjiunel.1 |
|- ( ph -> Disj_ x e. A B ) |
| 2 |
|
disjiunel.2 |
|- ( x = Y -> B = D ) |
| 3 |
|
disjiunel.3 |
|- ( ph -> E C_ A ) |
| 4 |
|
disjiunel.4 |
|- ( ph -> Y e. ( A \ E ) ) |
| 5 |
4
|
eldifad |
|- ( ph -> Y e. A ) |
| 6 |
5
|
snssd |
|- ( ph -> { Y } C_ A ) |
| 7 |
3 6
|
unssd |
|- ( ph -> ( E u. { Y } ) C_ A ) |
| 8 |
|
disjss1 |
|- ( ( E u. { Y } ) C_ A -> ( Disj_ x e. A B -> Disj_ x e. ( E u. { Y } ) B ) ) |
| 9 |
7 1 8
|
sylc |
|- ( ph -> Disj_ x e. ( E u. { Y } ) B ) |
| 10 |
4
|
eldifbd |
|- ( ph -> -. Y e. E ) |
| 11 |
2
|
disjunsn |
|- ( ( Y e. A /\ -. Y e. E ) -> ( Disj_ x e. ( E u. { Y } ) B <-> ( Disj_ x e. E B /\ ( U_ x e. E B i^i D ) = (/) ) ) ) |
| 12 |
5 10 11
|
syl2anc |
|- ( ph -> ( Disj_ x e. ( E u. { Y } ) B <-> ( Disj_ x e. E B /\ ( U_ x e. E B i^i D ) = (/) ) ) ) |
| 13 |
9 12
|
mpbid |
|- ( ph -> ( Disj_ x e. E B /\ ( U_ x e. E B i^i D ) = (/) ) ) |
| 14 |
13
|
simprd |
|- ( ph -> ( U_ x e. E B i^i D ) = (/) ) |