Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjiunel.1 | |
|
disjiunel.2 | |
||
disjiunel.3 | |
||
disjiunel.4 | |
||
Assertion | disjiunel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjiunel.1 | |
|
2 | disjiunel.2 | |
|
3 | disjiunel.3 | |
|
4 | disjiunel.4 | |
|
5 | 4 | eldifad | |
6 | 5 | snssd | |
7 | 3 6 | unssd | |
8 | disjss1 | |
|
9 | 7 1 8 | sylc | |
10 | 4 | eldifbd | |
11 | 2 | disjunsn | |
12 | 5 10 11 | syl2anc | |
13 | 9 12 | mpbid | |
14 | 13 | simprd | |