Metamath Proof Explorer


Theorem disjiunel

Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses disjiunel.1 φDisjxAB
disjiunel.2 x=YB=D
disjiunel.3 φEA
disjiunel.4 φYAE
Assertion disjiunel φxEBD=

Proof

Step Hyp Ref Expression
1 disjiunel.1 φDisjxAB
2 disjiunel.2 x=YB=D
3 disjiunel.3 φEA
4 disjiunel.4 φYAE
5 4 eldifad φYA
6 5 snssd φYA
7 3 6 unssd φEYA
8 disjss1 EYADisjxABDisjxEYB
9 7 1 8 sylc φDisjxEYB
10 4 eldifbd φ¬YE
11 2 disjunsn YA¬YEDisjxEYBDisjxEBxEBD=
12 5 10 11 syl2anc φDisjxEYBDisjxEBxEBD=
13 9 12 mpbid φDisjxEBxEBD=
14 13 simprd φxEBD=