| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjiunel.1 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
| 2 |
|
disjiunel.2 |
⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) |
| 3 |
|
disjiunel.3 |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐴 ) |
| 4 |
|
disjiunel.4 |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 ∖ 𝐸 ) ) |
| 5 |
4
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 6 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐴 ) |
| 7 |
3 6
|
unssd |
⊢ ( 𝜑 → ( 𝐸 ∪ { 𝑌 } ) ⊆ 𝐴 ) |
| 8 |
|
disjss1 |
⊢ ( ( 𝐸 ∪ { 𝑌 } ) ⊆ 𝐴 → ( Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ) ) |
| 9 |
7 1 8
|
sylc |
⊢ ( 𝜑 → Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ) |
| 10 |
4
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝐸 ) |
| 11 |
2
|
disjunsn |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ ¬ 𝑌 ∈ 𝐸 ) → ( Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ↔ ( Disj 𝑥 ∈ 𝐸 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) ) ) |
| 12 |
5 10 11
|
syl2anc |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ ( 𝐸 ∪ { 𝑌 } ) 𝐵 ↔ ( Disj 𝑥 ∈ 𝐸 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) ) ) |
| 13 |
9 12
|
mpbid |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐸 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) ) |
| 14 |
13
|
simprd |
⊢ ( 𝜑 → ( ∪ 𝑥 ∈ 𝐸 𝐵 ∩ 𝐷 ) = ∅ ) |