| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjunsn.s |
⊢ ( 𝑥 = 𝑀 → 𝐵 = 𝐶 ) |
| 2 |
|
disjors |
⊢ ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ∀ 𝑖 ∈ ( 𝐴 ∪ { 𝑀 } ) ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑀 → ( 𝑖 = 𝑗 ↔ 𝑀 = 𝑗 ) ) |
| 4 |
|
csbeq1 |
⊢ ( 𝑖 = 𝑀 → ⦋ 𝑖 / 𝑥 ⦌ 𝐵 = ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) |
| 5 |
4
|
ineq1d |
⊢ ( 𝑖 = 𝑀 → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑖 = 𝑀 → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 7 |
3 6
|
orbi12d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 8 |
7
|
ralbidv |
⊢ ( 𝑖 = 𝑀 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 9 |
8
|
ralunsn |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑖 ∈ ( 𝐴 ∪ { 𝑀 } ) ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 10 |
2 9
|
bitrid |
⊢ ( 𝑀 ∈ 𝑉 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 11 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑖 = 𝑗 ↔ 𝑖 = 𝑀 ) ) |
| 12 |
|
csbeq1 |
⊢ ( 𝑗 = 𝑀 → ⦋ 𝑗 / 𝑥 ⦌ 𝐵 = ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) |
| 13 |
12
|
ineq2d |
⊢ ( 𝑗 = 𝑀 → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 15 |
11 14
|
orbi12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 16 |
15
|
ralunsn |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 18 |
|
eqeq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑀 = 𝑗 ↔ 𝑀 = 𝑀 ) ) |
| 19 |
12
|
ineq2d |
⊢ ( 𝑗 = 𝑀 → ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) ) |
| 20 |
19
|
eqeq1d |
⊢ ( 𝑗 = 𝑀 → ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 21 |
18 20
|
orbi12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 22 |
21
|
ralunsn |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 23 |
|
eqid |
⊢ 𝑀 = 𝑀 |
| 24 |
23
|
orci |
⊢ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 25 |
24
|
biantru |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑀 = 𝑀 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 26 |
22 25
|
bitr4di |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 27 |
17 26
|
anbi12d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑗 ∈ ( 𝐴 ∪ { 𝑀 } ) ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 28 |
10 27
|
bitrd |
⊢ ( 𝑀 ∈ 𝑉 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 29 |
|
r19.26 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 30 |
|
disjors |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 31 |
30
|
anbi1i |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ∀ 𝑖 ∈ 𝐴 ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 32 |
29 31
|
bitr4i |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 33 |
32
|
anbi1i |
⊢ ( ( ∀ 𝑖 ∈ 𝐴 ( ∀ 𝑗 ∈ 𝐴 ( 𝑖 = 𝑗 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ∧ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 34 |
28 33
|
bitrdi |
⊢ ( 𝑀 ∈ 𝑉 → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) ) |
| 36 |
|
orcom |
⊢ ( ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) ↔ ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 37 |
36
|
ralbii |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) ↔ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 38 |
|
r19.30 |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) ) |
| 39 |
|
risset |
⊢ ( 𝑀 ∈ 𝐴 ↔ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) |
| 40 |
|
biorf |
⊢ ( ¬ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 41 |
39 40
|
sylnbi |
⊢ ( ¬ 𝑀 ∈ 𝐴 → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 43 |
|
orcom |
⊢ ( ( ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ∨ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) ) |
| 44 |
42 43
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑖 ∈ 𝐴 𝑖 = 𝑀 ) ) ) |
| 45 |
38 44
|
imbitrrid |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑖 = 𝑀 ) → ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 46 |
37 45
|
biimtrrid |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 47 |
|
olc |
⊢ ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ → ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 48 |
47
|
ralimi |
⊢ ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ → ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 49 |
46 48
|
impbid1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 50 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝐵 ∩ 𝐶 ) = ∅ |
| 51 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑖 / 𝑥 ⦌ 𝐵 |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 53 |
51 52
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 54 |
53
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ |
| 55 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ) |
| 56 |
55
|
ineq1d |
⊢ ( 𝑥 = 𝑖 → ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 57 |
56
|
eqeq1d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 58 |
50 54 57
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) |
| 59 |
58
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 60 |
|
ss0b |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) |
| 61 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ) |
| 62 |
|
iunin1 |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) |
| 63 |
62
|
eqeq1i |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) |
| 64 |
60 61 63
|
3bitr3ri |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ) |
| 65 |
|
ss0b |
⊢ ( ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ( 𝐵 ∩ 𝐶 ) = ∅ ) |
| 66 |
65
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) |
| 67 |
64 66
|
bitri |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) |
| 68 |
67
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 69 |
|
nfcvd |
⊢ ( 𝑀 ∈ 𝑉 → Ⅎ 𝑥 𝐶 ) |
| 70 |
69 1
|
csbiegf |
⊢ ( 𝑀 ∈ 𝑉 → ⦋ 𝑀 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 71 |
70
|
ineq2d |
⊢ ( 𝑀 ∈ 𝑉 → ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 72 |
71
|
eqeq1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 73 |
72
|
ralbidv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 74 |
59 68 73
|
3bitr4d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑖 ∈ 𝐴 ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 76 |
49 75
|
bitr4d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 77 |
76
|
anbi2d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
| 78 |
|
orcom |
⊢ ( ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) ↔ ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 79 |
78
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 80 |
|
r19.30 |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) ) |
| 81 |
|
clel5 |
⊢ ( 𝑀 ∈ 𝐴 ↔ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) |
| 82 |
|
biorf |
⊢ ( ¬ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 83 |
81 82
|
sylnbi |
⊢ ( ¬ 𝑀 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ) |
| 85 |
|
orcom |
⊢ ( ( ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ∨ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) ) |
| 86 |
84 85
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ ∃ 𝑗 ∈ 𝐴 𝑀 = 𝑗 ) ) ) |
| 87 |
80 86
|
imbitrrid |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ∨ 𝑀 = 𝑗 ) → ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 88 |
79 87
|
biimtrrid |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) → ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 89 |
|
olc |
⊢ ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 90 |
89
|
ralimi |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ → ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 91 |
88 90
|
impbid1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 92 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝐵 ∩ 𝐶 ) = ∅ |
| 93 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑗 / 𝑥 ⦌ 𝐵 |
| 94 |
93 52
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) |
| 95 |
94
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ |
| 96 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
| 97 |
96
|
ineq1d |
⊢ ( 𝑥 = 𝑗 → ( 𝐵 ∩ 𝐶 ) = ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) ) |
| 98 |
97
|
eqeq1d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 99 |
92 95 98
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) |
| 100 |
99
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 101 |
|
incom |
⊢ ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) |
| 102 |
101
|
eqeq1i |
⊢ ( ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ↔ ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 103 |
102
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) |
| 104 |
100 103
|
bitrdi |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 105 |
70
|
ineq1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) ) |
| 106 |
105
|
eqeq1d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 107 |
106
|
ralbidv |
⊢ ( 𝑀 ∈ 𝑉 → ( ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( 𝐶 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 108 |
104 68 107
|
3bitr4d |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ↔ ∀ 𝑗 ∈ 𝐴 ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) |
| 110 |
91 109
|
bitr4d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 111 |
77 110
|
anbi12d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
| 112 |
|
anass |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
| 113 |
|
anidm |
⊢ ( ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) |
| 114 |
113
|
anbi2i |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 115 |
112 114
|
bitri |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) |
| 116 |
111 115
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑖 ∈ 𝐴 ( 𝑖 = 𝑀 ∨ ( ⦋ 𝑖 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑀 = 𝑗 ∨ ( ⦋ 𝑀 / 𝑥 ⦌ 𝐵 ∩ ⦋ 𝑗 / 𝑥 ⦌ 𝐵 ) = ∅ ) ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
| 117 |
35 116
|
bitrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ¬ 𝑀 ∈ 𝐴 ) → ( Disj 𝑥 ∈ ( 𝐴 ∪ { 𝑀 } ) 𝐵 ↔ ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |