| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjunsn.s |
|- ( x = M -> B = C ) |
| 2 |
|
disjors |
|- ( Disj_ x e. ( A u. { M } ) B <-> A. i e. ( A u. { M } ) A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 3 |
|
eqeq1 |
|- ( i = M -> ( i = j <-> M = j ) ) |
| 4 |
|
csbeq1 |
|- ( i = M -> [_ i / x ]_ B = [_ M / x ]_ B ) |
| 5 |
4
|
ineq1d |
|- ( i = M -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = ( [_ M / x ]_ B i^i [_ j / x ]_ B ) ) |
| 6 |
5
|
eqeq1d |
|- ( i = M -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 7 |
3 6
|
orbi12d |
|- ( i = M -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 8 |
7
|
ralbidv |
|- ( i = M -> ( A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 9 |
8
|
ralunsn |
|- ( M e. V -> ( A. i e. ( A u. { M } ) A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
| 10 |
2 9
|
bitrid |
|- ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
| 11 |
|
eqeq2 |
|- ( j = M -> ( i = j <-> i = M ) ) |
| 12 |
|
csbeq1 |
|- ( j = M -> [_ j / x ]_ B = [_ M / x ]_ B ) |
| 13 |
12
|
ineq2d |
|- ( j = M -> ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = ( [_ i / x ]_ B i^i [_ M / x ]_ B ) ) |
| 14 |
13
|
eqeq1d |
|- ( j = M -> ( ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 15 |
11 14
|
orbi12d |
|- ( j = M -> ( ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 16 |
15
|
ralunsn |
|- ( M e. V -> ( A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) |
| 17 |
16
|
ralbidv |
|- ( M e. V -> ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) |
| 18 |
|
eqeq2 |
|- ( j = M -> ( M = j <-> M = M ) ) |
| 19 |
12
|
ineq2d |
|- ( j = M -> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = ( [_ M / x ]_ B i^i [_ M / x ]_ B ) ) |
| 20 |
19
|
eqeq1d |
|- ( j = M -> ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 21 |
18 20
|
orbi12d |
|- ( j = M -> ( ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 22 |
21
|
ralunsn |
|- ( M e. V -> ( A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) ) |
| 23 |
|
eqid |
|- M = M |
| 24 |
23
|
orci |
|- ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) |
| 25 |
24
|
biantru |
|- ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( M = M \/ ( [_ M / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 26 |
22 25
|
bitr4di |
|- ( M e. V -> ( A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 27 |
17 26
|
anbi12d |
|- ( M e. V -> ( ( A. i e. A A. j e. ( A u. { M } ) ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. j e. ( A u. { M } ) ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
| 28 |
10 27
|
bitrd |
|- ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
| 29 |
|
r19.26 |
|- ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 30 |
|
disjors |
|- ( Disj_ x e. A B <-> A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 31 |
30
|
anbi1i |
|- ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( A. i e. A A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 32 |
29 31
|
bitr4i |
|- ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 33 |
32
|
anbi1i |
|- ( ( A. i e. A ( A. j e. A ( i = j \/ ( [_ i / x ]_ B i^i [_ j / x ]_ B ) = (/) ) /\ ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 34 |
28 33
|
bitrdi |
|- ( M e. V -> ( Disj_ x e. ( A u. { M } ) B <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
| 35 |
34
|
adantr |
|- ( ( M e. V /\ -. M e. A ) -> ( Disj_ x e. ( A u. { M } ) B <-> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) ) |
| 36 |
|
orcom |
|- ( ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) <-> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 37 |
36
|
ralbii |
|- ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) <-> A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 38 |
|
r19.30 |
|- ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) |
| 39 |
|
risset |
|- ( M e. A <-> E. i e. A i = M ) |
| 40 |
|
biorf |
|- ( -. E. i e. A i = M -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 41 |
39 40
|
sylnbi |
|- ( -. M e. A -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 42 |
41
|
adantl |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) ) |
| 43 |
|
orcom |
|- ( ( E. i e. A i = M \/ A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) |
| 44 |
42 43
|
bitrdi |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ E. i e. A i = M ) ) ) |
| 45 |
38 44
|
imbitrrid |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) \/ i = M ) -> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 46 |
37 45
|
biimtrrid |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) -> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 47 |
|
olc |
|- ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) -> ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 48 |
47
|
ralimi |
|- ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) -> A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 49 |
46 48
|
impbid1 |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 50 |
|
nfv |
|- F/ i ( B i^i C ) = (/) |
| 51 |
|
nfcsb1v |
|- F/_ x [_ i / x ]_ B |
| 52 |
|
nfcv |
|- F/_ x C |
| 53 |
51 52
|
nfin |
|- F/_ x ( [_ i / x ]_ B i^i C ) |
| 54 |
53
|
nfeq1 |
|- F/ x ( [_ i / x ]_ B i^i C ) = (/) |
| 55 |
|
csbeq1a |
|- ( x = i -> B = [_ i / x ]_ B ) |
| 56 |
55
|
ineq1d |
|- ( x = i -> ( B i^i C ) = ( [_ i / x ]_ B i^i C ) ) |
| 57 |
56
|
eqeq1d |
|- ( x = i -> ( ( B i^i C ) = (/) <-> ( [_ i / x ]_ B i^i C ) = (/) ) ) |
| 58 |
50 54 57
|
cbvralw |
|- ( A. x e. A ( B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) |
| 59 |
58
|
a1i |
|- ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) ) |
| 60 |
|
ss0b |
|- ( U_ x e. A ( B i^i C ) C_ (/) <-> U_ x e. A ( B i^i C ) = (/) ) |
| 61 |
|
iunss |
|- ( U_ x e. A ( B i^i C ) C_ (/) <-> A. x e. A ( B i^i C ) C_ (/) ) |
| 62 |
|
iunin1 |
|- U_ x e. A ( B i^i C ) = ( U_ x e. A B i^i C ) |
| 63 |
62
|
eqeq1i |
|- ( U_ x e. A ( B i^i C ) = (/) <-> ( U_ x e. A B i^i C ) = (/) ) |
| 64 |
60 61 63
|
3bitr3ri |
|- ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) C_ (/) ) |
| 65 |
|
ss0b |
|- ( ( B i^i C ) C_ (/) <-> ( B i^i C ) = (/) ) |
| 66 |
65
|
ralbii |
|- ( A. x e. A ( B i^i C ) C_ (/) <-> A. x e. A ( B i^i C ) = (/) ) |
| 67 |
64 66
|
bitri |
|- ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) = (/) ) |
| 68 |
67
|
a1i |
|- ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. x e. A ( B i^i C ) = (/) ) ) |
| 69 |
|
nfcvd |
|- ( M e. V -> F/_ x C ) |
| 70 |
69 1
|
csbiegf |
|- ( M e. V -> [_ M / x ]_ B = C ) |
| 71 |
70
|
ineq2d |
|- ( M e. V -> ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = ( [_ i / x ]_ B i^i C ) ) |
| 72 |
71
|
eqeq1d |
|- ( M e. V -> ( ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> ( [_ i / x ]_ B i^i C ) = (/) ) ) |
| 73 |
72
|
ralbidv |
|- ( M e. V -> ( A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i C ) = (/) ) ) |
| 74 |
59 68 73
|
3bitr4d |
|- ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 75 |
74
|
adantr |
|- ( ( M e. V /\ -. M e. A ) -> ( ( U_ x e. A B i^i C ) = (/) <-> A. i e. A ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) |
| 76 |
49 75
|
bitr4d |
|- ( ( M e. V /\ -. M e. A ) -> ( A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) ) |
| 77 |
76
|
anbi2d |
|- ( ( M e. V /\ -. M e. A ) -> ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
| 78 |
|
orcom |
|- ( ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) <-> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 79 |
78
|
ralbii |
|- ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) <-> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 80 |
|
r19.30 |
|- ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) |
| 81 |
|
clel5 |
|- ( M e. A <-> E. j e. A M = j ) |
| 82 |
|
biorf |
|- ( -. E. j e. A M = j -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 83 |
81 82
|
sylnbi |
|- ( -. M e. A -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 84 |
83
|
adantl |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) ) |
| 85 |
|
orcom |
|- ( ( E. j e. A M = j \/ A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) |
| 86 |
84 85
|
bitrdi |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ E. j e. A M = j ) ) ) |
| 87 |
80 86
|
imbitrrid |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) \/ M = j ) -> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 88 |
79 87
|
biimtrrid |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) -> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 89 |
|
olc |
|- ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) -> ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 90 |
89
|
ralimi |
|- ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) -> A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 91 |
88 90
|
impbid1 |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 92 |
|
nfv |
|- F/ j ( B i^i C ) = (/) |
| 93 |
|
nfcsb1v |
|- F/_ x [_ j / x ]_ B |
| 94 |
93 52
|
nfin |
|- F/_ x ( [_ j / x ]_ B i^i C ) |
| 95 |
94
|
nfeq1 |
|- F/ x ( [_ j / x ]_ B i^i C ) = (/) |
| 96 |
|
csbeq1a |
|- ( x = j -> B = [_ j / x ]_ B ) |
| 97 |
96
|
ineq1d |
|- ( x = j -> ( B i^i C ) = ( [_ j / x ]_ B i^i C ) ) |
| 98 |
97
|
eqeq1d |
|- ( x = j -> ( ( B i^i C ) = (/) <-> ( [_ j / x ]_ B i^i C ) = (/) ) ) |
| 99 |
92 95 98
|
cbvralw |
|- ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( [_ j / x ]_ B i^i C ) = (/) ) |
| 100 |
99
|
a1i |
|- ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( [_ j / x ]_ B i^i C ) = (/) ) ) |
| 101 |
|
incom |
|- ( [_ j / x ]_ B i^i C ) = ( C i^i [_ j / x ]_ B ) |
| 102 |
101
|
eqeq1i |
|- ( ( [_ j / x ]_ B i^i C ) = (/) <-> ( C i^i [_ j / x ]_ B ) = (/) ) |
| 103 |
102
|
ralbii |
|- ( A. j e. A ( [_ j / x ]_ B i^i C ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) |
| 104 |
100 103
|
bitrdi |
|- ( M e. V -> ( A. x e. A ( B i^i C ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) ) |
| 105 |
70
|
ineq1d |
|- ( M e. V -> ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = ( C i^i [_ j / x ]_ B ) ) |
| 106 |
105
|
eqeq1d |
|- ( M e. V -> ( ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> ( C i^i [_ j / x ]_ B ) = (/) ) ) |
| 107 |
106
|
ralbidv |
|- ( M e. V -> ( A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) <-> A. j e. A ( C i^i [_ j / x ]_ B ) = (/) ) ) |
| 108 |
104 68 107
|
3bitr4d |
|- ( M e. V -> ( ( U_ x e. A B i^i C ) = (/) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 109 |
108
|
adantr |
|- ( ( M e. V /\ -. M e. A ) -> ( ( U_ x e. A B i^i C ) = (/) <-> A. j e. A ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) |
| 110 |
91 109
|
bitr4d |
|- ( ( M e. V /\ -. M e. A ) -> ( A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) ) |
| 111 |
77 110
|
anbi12d |
|- ( ( M e. V /\ -. M e. A ) -> ( ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
| 112 |
|
anass |
|- ( ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( Disj_ x e. A B /\ ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
| 113 |
|
anidm |
|- ( ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( U_ x e. A B i^i C ) = (/) ) |
| 114 |
113
|
anbi2i |
|- ( ( Disj_ x e. A B /\ ( ( U_ x e. A B i^i C ) = (/) /\ ( U_ x e. A B i^i C ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) |
| 115 |
112 114
|
bitri |
|- ( ( ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) /\ ( U_ x e. A B i^i C ) = (/) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) |
| 116 |
111 115
|
bitrdi |
|- ( ( M e. V /\ -. M e. A ) -> ( ( ( Disj_ x e. A B /\ A. i e. A ( i = M \/ ( [_ i / x ]_ B i^i [_ M / x ]_ B ) = (/) ) ) /\ A. j e. A ( M = j \/ ( [_ M / x ]_ B i^i [_ j / x ]_ B ) = (/) ) ) <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |
| 117 |
35 116
|
bitrd |
|- ( ( M e. V /\ -. M e. A ) -> ( Disj_ x e. ( A u. { M } ) B <-> ( Disj_ x e. A B /\ ( U_ x e. A B i^i C ) = (/) ) ) ) |