Description: Cancellation of inverted fractions. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
divcld.2 | |- ( ph -> B e. CC ) |
||
divne0d.3 | |- ( ph -> A =/= 0 ) |
||
divne0d.4 | |- ( ph -> B =/= 0 ) |
||
Assertion | divcan6d | |- ( ph -> ( ( A / B ) x. ( B / A ) ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | |- ( ph -> A e. CC ) |
|
2 | divcld.2 | |- ( ph -> B e. CC ) |
|
3 | divne0d.3 | |- ( ph -> A =/= 0 ) |
|
4 | divne0d.4 | |- ( ph -> B =/= 0 ) |
|
5 | divcan6 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) x. ( B / A ) ) = 1 ) |
|
6 | 1 3 2 4 5 | syl22anc | |- ( ph -> ( ( A / B ) x. ( B / A ) ) = 1 ) |