Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recxpcld.1 | |- ( ph -> A e. RR ) |
|
| recxpcld.2 | |- ( ph -> 0 <_ A ) |
||
| divcxpd.4 | |- ( ph -> B e. RR+ ) |
||
| divcxpd.5 | |- ( ph -> C e. CC ) |
||
| Assertion | divcxpd | |- ( ph -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recxpcld.1 | |- ( ph -> A e. RR ) |
|
| 2 | recxpcld.2 | |- ( ph -> 0 <_ A ) |
|
| 3 | divcxpd.4 | |- ( ph -> B e. RR+ ) |
|
| 4 | divcxpd.5 | |- ( ph -> C e. CC ) |
|
| 5 | divcxp | |- ( ( ( A e. RR /\ 0 <_ A ) /\ B e. RR+ /\ C e. CC ) -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |
|
| 6 | 1 2 3 4 5 | syl211anc | |- ( ph -> ( ( A / B ) ^c C ) = ( ( A ^c C ) / ( B ^c C ) ) ) |