Metamath Proof Explorer
		
		
		
		Description:  Complex exponentiation of a quotient.  (Contributed by Mario Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | recxpcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | recxpcld.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
					
						|  |  | divcxpd.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
					
						|  |  | divcxpd.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
				
					|  | Assertion | divcxpd | ⊢  ( 𝜑  →  ( ( 𝐴  /  𝐵 ) ↑𝑐 𝐶 )  =  ( ( 𝐴 ↑𝑐 𝐶 )  /  ( 𝐵 ↑𝑐 𝐶 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recxpcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | recxpcld.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 3 |  | divcxpd.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | divcxpd.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | divcxp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  𝐵  ∈  ℝ+  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  /  𝐵 ) ↑𝑐 𝐶 )  =  ( ( 𝐴 ↑𝑐 𝐶 )  /  ( 𝐵 ↑𝑐 𝐶 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl211anc | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝐵 ) ↑𝑐 𝐶 )  =  ( ( 𝐴 ↑𝑐 𝐶 )  /  ( 𝐵 ↑𝑐 𝐶 ) ) ) |