Metamath Proof Explorer
Description: Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 30-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
recxpcld.1 |
|
|
|
recxpcld.2 |
|
|
|
divcxpd.4 |
|
|
|
divcxpd.5 |
|
|
Assertion |
divcxpd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recxpcld.1 |
|
| 2 |
|
recxpcld.2 |
|
| 3 |
|
divcxpd.4 |
|
| 4 |
|
divcxpd.5 |
|
| 5 |
|
divcxp |
|
| 6 |
1 2 3 4 5
|
syl211anc |
|