Description: Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divdiv3d.1 | |- ( ph -> A e. CC ) |
|
| divdiv3d.2 | |- ( ph -> B e. CC ) |
||
| divdiv3d.3 | |- ( ph -> C e. CC ) |
||
| divdiv3d.4 | |- ( ph -> B =/= 0 ) |
||
| divdiv3d.5 | |- ( ph -> C =/= 0 ) |
||
| Assertion | divdiv3d | |- ( ph -> ( ( A / B ) / C ) = ( A / ( C x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdiv3d.1 | |- ( ph -> A e. CC ) |
|
| 2 | divdiv3d.2 | |- ( ph -> B e. CC ) |
|
| 3 | divdiv3d.3 | |- ( ph -> C e. CC ) |
|
| 4 | divdiv3d.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | divdiv3d.5 | |- ( ph -> C =/= 0 ) |
|
| 6 | 1 2 3 4 5 | divdiv1d | |- ( ph -> ( ( A / B ) / C ) = ( A / ( B x. C ) ) ) |
| 7 | 2 3 | mulcomd | |- ( ph -> ( B x. C ) = ( C x. B ) ) |
| 8 | 7 | oveq2d | |- ( ph -> ( A / ( B x. C ) ) = ( A / ( C x. B ) ) ) |
| 9 | 6 8 | eqtrd | |- ( ph -> ( ( A / B ) / C ) = ( A / ( C x. B ) ) ) |