Description: Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divdiv3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| divdiv3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| divdiv3d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| divdiv3d.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| divdiv3d.5 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | ||
| Assertion | divdiv3d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐶 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divdiv3d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | divdiv3d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | divdiv3d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | divdiv3d.4 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 5 | divdiv3d.5 | ⊢ ( 𝜑 → 𝐶 ≠ 0 ) | |
| 6 | 1 2 3 4 5 | divdiv1d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐵 · 𝐶 ) ) ) |
| 7 | 2 3 | mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 8 | 7 | oveq2d | ⊢ ( 𝜑 → ( 𝐴 / ( 𝐵 · 𝐶 ) ) = ( 𝐴 / ( 𝐶 · 𝐵 ) ) ) |
| 9 | 6 8 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) / 𝐶 ) = ( 𝐴 / ( 𝐶 · 𝐵 ) ) ) |