Metamath Proof Explorer


Theorem divdiv3d

Description: Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses divdiv3d.1 φA
divdiv3d.2 φB
divdiv3d.3 φC
divdiv3d.4 φB0
divdiv3d.5 φC0
Assertion divdiv3d φABC=ACB

Proof

Step Hyp Ref Expression
1 divdiv3d.1 φA
2 divdiv3d.2 φB
3 divdiv3d.3 φC
4 divdiv3d.4 φB0
5 divdiv3d.5 φC0
6 1 2 3 4 5 divdiv1d φABC=ABC
7 2 3 mulcomd φBC=CB
8 7 oveq2d φABC=ACB
9 6 8 eqtrd φABC=ACB