Description: The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divlt0gt0d.1 | |- ( ph -> A e. RR ) |
|
| divlt0gt0d.2 | |- ( ph -> B e. RR+ ) |
||
| divlt0gt0d.3 | |- ( ph -> A < 0 ) |
||
| Assertion | divlt0gt0d | |- ( ph -> ( A / B ) < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divlt0gt0d.1 | |- ( ph -> A e. RR ) |
|
| 2 | divlt0gt0d.2 | |- ( ph -> B e. RR+ ) |
|
| 3 | divlt0gt0d.3 | |- ( ph -> A < 0 ) |
|
| 4 | 0red | |- ( ph -> 0 e. RR ) |
|
| 5 | 1 4 | ltnled | |- ( ph -> ( A < 0 <-> -. 0 <_ A ) ) |
| 6 | 3 5 | mpbid | |- ( ph -> -. 0 <_ A ) |
| 7 | 1 2 | ge0divd | |- ( ph -> ( 0 <_ A <-> 0 <_ ( A / B ) ) ) |
| 8 | 6 7 | mtbid | |- ( ph -> -. 0 <_ ( A / B ) ) |
| 9 | 1 2 | rerpdivcld | |- ( ph -> ( A / B ) e. RR ) |
| 10 | 9 4 | ltnled | |- ( ph -> ( ( A / B ) < 0 <-> -. 0 <_ ( A / B ) ) ) |
| 11 | 8 10 | mpbird | |- ( ph -> ( A / B ) < 0 ) |