Description: Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subsub23d.1 | |- ( ph -> A e. CC ) |
|
| subsub23d.2 | |- ( ph -> B e. CC ) |
||
| subsub23d.3 | |- ( ph -> C e. CC ) |
||
| Assertion | subsub23d | |- ( ph -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub23d.1 | |- ( ph -> A e. CC ) |
|
| 2 | subsub23d.2 | |- ( ph -> B e. CC ) |
|
| 3 | subsub23d.3 | |- ( ph -> C e. CC ) |
|
| 4 | subsub23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |