Metamath Proof Explorer


Theorem subsub23d

Description: Swap subtrahend and result of subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses subsub23d.1 φA
subsub23d.2 φB
subsub23d.3 φC
Assertion subsub23d φAB=CAC=B

Proof

Step Hyp Ref Expression
1 subsub23d.1 φA
2 subsub23d.2 φB
3 subsub23d.3 φC
4 subsub23 ABCAB=CAC=B
5 1 2 3 4 syl3anc φAB=CAC=B