Metamath Proof Explorer


Theorem subsub23

Description: Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007)

Ref Expression
Assertion subsub23 A B C A B = C A C = B

Proof

Step Hyp Ref Expression
1 addcom B C B + C = C + B
2 1 3adant1 A B C B + C = C + B
3 2 eqeq1d A B C B + C = A C + B = A
4 subadd A B C A B = C B + C = A
5 subadd A C B A C = B C + B = A
6 5 3com23 A B C A C = B C + B = A
7 3 4 6 3bitr4d A B C A B = C A C = B