Metamath Proof Explorer


Theorem subsub23

Description: Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007)

Ref Expression
Assertion subsub23 ABCAB=CAC=B

Proof

Step Hyp Ref Expression
1 addcom BCB+C=C+B
2 1 3adant1 ABCB+C=C+B
3 2 eqeq1d ABCB+C=AC+B=A
4 subadd ABCAB=CB+C=A
5 subadd ACBAC=BC+B=A
6 5 3com23 ABCAC=BC+B=A
7 3 4 6 3bitr4d ABCAB=CAC=B