Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subsub23
Next ⟩
pncan
Metamath Proof Explorer
Ascii
Unicode
Theorem
subsub23
Description:
Swap subtrahend and result of subtraction.
(Contributed by
NM
, 14-Dec-2007)
Ref
Expression
Assertion
subsub23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
=
C
↔
A
−
C
=
B
Proof
Step
Hyp
Ref
Expression
1
addcom
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
=
C
+
B
2
1
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
=
C
+
B
3
2
eqeq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
B
+
C
=
A
↔
C
+
B
=
A
4
subadd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
=
C
↔
B
+
C
=
A
5
subadd
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
−
C
=
B
↔
C
+
B
=
A
6
5
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
=
B
↔
C
+
B
=
A
7
3
4
6
3bitr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
=
C
↔
A
−
C
=
B