Description: The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divlt0gt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| divlt0gt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| divlt0gt0d.3 | ⊢ ( 𝜑 → 𝐴 < 0 ) | ||
| Assertion | divlt0gt0d | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) < 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divlt0gt0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | divlt0gt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | divlt0gt0d.3 | ⊢ ( 𝜑 → 𝐴 < 0 ) | |
| 4 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 5 | 1 4 | ltnled | ⊢ ( 𝜑 → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) ) |
| 6 | 3 5 | mpbid | ⊢ ( 𝜑 → ¬ 0 ≤ 𝐴 ) |
| 7 | 1 2 | ge0divd | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ 0 ≤ ( 𝐴 / 𝐵 ) ) ) |
| 8 | 6 7 | mtbid | ⊢ ( 𝜑 → ¬ 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 9 | 1 2 | rerpdivcld | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 10 | 9 4 | ltnled | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) < 0 ↔ ¬ 0 ≤ ( 𝐴 / 𝐵 ) ) ) |
| 11 | 8 10 | mpbird | ⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) < 0 ) |