| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divmuldivsd.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | divmuldivsd.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | divmuldivsd.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 |  | divmuldivsd.4 |  |-  ( ph -> D e. No ) | 
						
							| 5 |  | divmuldivsd.5 |  |-  ( ph -> B =/= 0s ) | 
						
							| 6 |  | divmuldivsd.6 |  |-  ( ph -> D =/= 0s ) | 
						
							| 7 | 1 2 5 | divscld |  |-  ( ph -> ( A /su B ) e. No ) | 
						
							| 8 | 3 4 6 | divscld |  |-  ( ph -> ( C /su D ) e. No ) | 
						
							| 9 | 2 4 7 8 | muls4d |  |-  ( ph -> ( ( B x.s D ) x.s ( ( A /su B ) x.s ( C /su D ) ) ) = ( ( B x.s ( A /su B ) ) x.s ( D x.s ( C /su D ) ) ) ) | 
						
							| 10 | 1 2 5 | divscan2d |  |-  ( ph -> ( B x.s ( A /su B ) ) = A ) | 
						
							| 11 | 3 4 6 | divscan2d |  |-  ( ph -> ( D x.s ( C /su D ) ) = C ) | 
						
							| 12 | 10 11 | oveq12d |  |-  ( ph -> ( ( B x.s ( A /su B ) ) x.s ( D x.s ( C /su D ) ) ) = ( A x.s C ) ) | 
						
							| 13 | 9 12 | eqtrd |  |-  ( ph -> ( ( B x.s D ) x.s ( ( A /su B ) x.s ( C /su D ) ) ) = ( A x.s C ) ) | 
						
							| 14 | 1 3 | mulscld |  |-  ( ph -> ( A x.s C ) e. No ) | 
						
							| 15 | 7 8 | mulscld |  |-  ( ph -> ( ( A /su B ) x.s ( C /su D ) ) e. No ) | 
						
							| 16 | 2 4 | mulscld |  |-  ( ph -> ( B x.s D ) e. No ) | 
						
							| 17 | 2 4 | mulsne0bd |  |-  ( ph -> ( ( B x.s D ) =/= 0s <-> ( B =/= 0s /\ D =/= 0s ) ) ) | 
						
							| 18 | 5 6 17 | mpbir2and |  |-  ( ph -> ( B x.s D ) =/= 0s ) | 
						
							| 19 | 14 15 16 18 | divsmuld |  |-  ( ph -> ( ( ( A x.s C ) /su ( B x.s D ) ) = ( ( A /su B ) x.s ( C /su D ) ) <-> ( ( B x.s D ) x.s ( ( A /su B ) x.s ( C /su D ) ) ) = ( A x.s C ) ) ) | 
						
							| 20 | 13 19 | mpbird |  |-  ( ph -> ( ( A x.s C ) /su ( B x.s D ) ) = ( ( A /su B ) x.s ( C /su D ) ) ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ph -> ( ( A /su B ) x.s ( C /su D ) ) = ( ( A x.s C ) /su ( B x.s D ) ) ) |