Description: Subtraction of two ratios. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | div1d.1 | |- ( ph -> A e. CC ) |
|
divcld.2 | |- ( ph -> B e. CC ) |
||
divmuld.3 | |- ( ph -> C e. CC ) |
||
divmuldivd.4 | |- ( ph -> D e. CC ) |
||
divmuldivd.5 | |- ( ph -> B =/= 0 ) |
||
divmuldivd.6 | |- ( ph -> D =/= 0 ) |
||
Assertion | divsubdivd | |- ( ph -> ( ( A / B ) - ( C / D ) ) = ( ( ( A x. D ) - ( C x. B ) ) / ( B x. D ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | |- ( ph -> A e. CC ) |
|
2 | divcld.2 | |- ( ph -> B e. CC ) |
|
3 | divmuld.3 | |- ( ph -> C e. CC ) |
|
4 | divmuldivd.4 | |- ( ph -> D e. CC ) |
|
5 | divmuldivd.5 | |- ( ph -> B =/= 0 ) |
|
6 | divmuldivd.6 | |- ( ph -> D =/= 0 ) |
|
7 | 2 5 | jca | |- ( ph -> ( B e. CC /\ B =/= 0 ) ) |
8 | 4 6 | jca | |- ( ph -> ( D e. CC /\ D =/= 0 ) ) |
9 | divsubdiv | |- ( ( ( A e. CC /\ C e. CC ) /\ ( ( B e. CC /\ B =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / B ) - ( C / D ) ) = ( ( ( A x. D ) - ( C x. B ) ) / ( B x. D ) ) ) |
|
10 | 1 3 7 8 9 | syl22anc | |- ( ph -> ( ( A / B ) - ( C / D ) ) = ( ( ( A x. D ) - ( C x. B ) ) / ( B x. D ) ) ) |