Step |
Hyp |
Ref |
Expression |
1 |
|
dmatbas.a |
|- A = ( N Mat R ) |
2 |
|
dmatbas.b |
|- B = ( Base ` A ) |
3 |
|
dmatbas.0 |
|- .0. = ( 0g ` R ) |
4 |
|
dmatbas.d |
|- D = ( N DMat R ) |
5 |
1 2 3 4
|
dmatval |
|- ( ( N e. Fin /\ R e. V ) -> D = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
6 |
|
elex |
|- ( R e. V -> R e. _V ) |
7 |
|
eqid |
|- ( N DMatALT R ) = ( N DMatALT R ) |
8 |
1 2 3 7
|
dmatALTbas |
|- ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( N DMatALT R ) ) = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
9 |
6 8
|
sylan2 |
|- ( ( N e. Fin /\ R e. V ) -> ( Base ` ( N DMatALT R ) ) = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } ) |
10 |
5 9
|
eqtr4d |
|- ( ( N e. Fin /\ R e. V ) -> D = ( Base ` ( N DMatALT R ) ) ) |