Metamath Proof Explorer


Theorem dmatbas

Description: The set of all N x N diagonal matrices over (the ring) R is the base set of the algebra of N x N diagonal matrices over (the ring) R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatbas.a
|- A = ( N Mat R )
dmatbas.b
|- B = ( Base ` A )
dmatbas.0
|- .0. = ( 0g ` R )
dmatbas.d
|- D = ( N DMat R )
Assertion dmatbas
|- ( ( N e. Fin /\ R e. V ) -> D = ( Base ` ( N DMatALT R ) ) )

Proof

Step Hyp Ref Expression
1 dmatbas.a
 |-  A = ( N Mat R )
2 dmatbas.b
 |-  B = ( Base ` A )
3 dmatbas.0
 |-  .0. = ( 0g ` R )
4 dmatbas.d
 |-  D = ( N DMat R )
5 1 2 3 4 dmatval
 |-  ( ( N e. Fin /\ R e. V ) -> D = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } )
6 elex
 |-  ( R e. V -> R e. _V )
7 eqid
 |-  ( N DMatALT R ) = ( N DMatALT R )
8 1 2 3 7 dmatALTbas
 |-  ( ( N e. Fin /\ R e. _V ) -> ( Base ` ( N DMatALT R ) ) = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } )
9 6 8 sylan2
 |-  ( ( N e. Fin /\ R e. V ) -> ( Base ` ( N DMatALT R ) ) = { m e. B | A. i e. N A. j e. N ( i =/= j -> ( i m j ) = .0. ) } )
10 5 9 eqtr4d
 |-  ( ( N e. Fin /\ R e. V ) -> D = ( Base ` ( N DMatALT R ) ) )