Metamath Proof Explorer


Theorem dmatbas

Description: The set of all N x N diagonal matrices over (the ring) R is the base set of the algebra of N x N diagonal matrices over (the ring) R . (Contributed by AV, 8-Dec-2019)

Ref Expression
Hypotheses dmatbas.a A = N Mat R
dmatbas.b B = Base A
dmatbas.0 0 ˙ = 0 R
dmatbas.d D = N DMat R
Assertion dmatbas N Fin R V D = Base N DMatALT R

Proof

Step Hyp Ref Expression
1 dmatbas.a A = N Mat R
2 dmatbas.b B = Base A
3 dmatbas.0 0 ˙ = 0 R
4 dmatbas.d D = N DMat R
5 1 2 3 4 dmatval N Fin R V D = m B | i N j N i j i m j = 0 ˙
6 elex R V R V
7 eqid N DMatALT R = N DMatALT R
8 1 2 3 7 dmatALTbas N Fin R V Base N DMatALT R = m B | i N j N i j i m j = 0 ˙
9 6 8 sylan2 N Fin R V Base N DMatALT R = m B | i N j N i j i m j = 0 ˙
10 5 9 eqtr4d N Fin R V D = Base N DMatALT R