| Step | Hyp | Ref | Expression | 
						
							| 1 |  | choccl |  |-  ( A e. CH -> ( _|_ ` A ) e. CH ) | 
						
							| 2 |  | choccl |  |-  ( B e. CH -> ( _|_ ` B ) e. CH ) | 
						
							| 3 |  | mdsym |  |-  ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) | 
						
							| 5 |  | dmdmd |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) ) | 
						
							| 6 |  | dmdmd |  |-  ( ( B e. CH /\ A e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. CH /\ B e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) | 
						
							| 8 | 4 5 7 | 3bitr4d |  |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> B MH* A ) ) |