| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 2 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
| 3 |
|
mdsym |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
| 5 |
|
dmdmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
| 6 |
|
dmdmd |
|- ( ( B e. CH /\ A e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
| 7 |
6
|
ancoms |
|- ( ( A e. CH /\ B e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
| 8 |
4 5 7
|
3bitr4d |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> B MH* A ) ) |