Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
2 |
|
choccl |
|- ( B e. CH -> ( _|_ ` B ) e. CH ) |
3 |
|
mdsym |
|- ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
5 |
|
dmdmd |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) ) |
6 |
|
dmdmd |
|- ( ( B e. CH /\ A e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
7 |
6
|
ancoms |
|- ( ( A e. CH /\ B e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) ) |
8 |
4 5 7
|
3bitr4d |
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> B MH* A ) ) |