Metamath Proof Explorer


Theorem dmdsym

Description: Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007) (New usage is discouraged.)

Ref Expression
Assertion dmdsym
|- ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> B MH* A ) )

Proof

Step Hyp Ref Expression
1 choccl
 |-  ( A e. CH -> ( _|_ ` A ) e. CH )
2 choccl
 |-  ( B e. CH -> ( _|_ ` B ) e. CH )
3 mdsym
 |-  ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) )
4 1 2 3 syl2an
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) MH ( _|_ ` B ) <-> ( _|_ ` B ) MH ( _|_ ` A ) ) )
5 dmdmd
 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> ( _|_ ` A ) MH ( _|_ ` B ) ) )
6 dmdmd
 |-  ( ( B e. CH /\ A e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) )
7 6 ancoms
 |-  ( ( A e. CH /\ B e. CH ) -> ( B MH* A <-> ( _|_ ` B ) MH ( _|_ ` A ) ) )
8 4 5 7 3bitr4d
 |-  ( ( A e. CH /\ B e. CH ) -> ( A MH* B <-> B MH* A ) )