Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
2 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
3 |
|
mdsym |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
5 |
|
dmdmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
6 |
|
dmdmd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 𝑀ℋ* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 𝑀ℋ* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
8 |
4 5 7
|
3bitr4d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴 ) ) |