| Step | Hyp | Ref | Expression | 
						
							| 1 |  | choccl | ⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  ) | 
						
							| 2 |  | choccl | ⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  ) | 
						
							| 3 |  | mdsym | ⊢ ( ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐴 )  𝑀ℋ  ( ⊥ ‘ 𝐵 )  ↔  ( ⊥ ‘ 𝐵 )  𝑀ℋ  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( ( ⊥ ‘ 𝐴 )  𝑀ℋ  ( ⊥ ‘ 𝐵 )  ↔  ( ⊥ ‘ 𝐵 )  𝑀ℋ  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 5 |  | dmdmd | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  𝑀ℋ*  𝐵  ↔  ( ⊥ ‘ 𝐴 )  𝑀ℋ  ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 6 |  | dmdmd | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ∈   Cℋ  )  →  ( 𝐵  𝑀ℋ*  𝐴  ↔  ( ⊥ ‘ 𝐵 )  𝑀ℋ  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐵  𝑀ℋ*  𝐴  ↔  ( ⊥ ‘ 𝐵 )  𝑀ℋ  ( ⊥ ‘ 𝐴 ) ) ) | 
						
							| 8 | 4 5 7 | 3bitr4d | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  𝑀ℋ*  𝐵  ↔  𝐵  𝑀ℋ*  𝐴 ) ) |