Metamath Proof Explorer


Theorem dmdsym

Description: Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007) (New usage is discouraged.)

Ref Expression
Assertion dmdsym ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵𝐵 𝑀* 𝐴 ) )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
2 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
3 mdsym ( ( ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
4 1 2 3 syl2an ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
5 dmdmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
6 dmdmd ( ( 𝐵C𝐴C ) → ( 𝐵 𝑀* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
7 6 ancoms ( ( 𝐴C𝐵C ) → ( 𝐵 𝑀* 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
8 4 5 7 3bitr4d ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵𝐵 𝑀* 𝐴 ) )