Metamath Proof Explorer


Theorem atdmd2

Description: Two Hilbert lattice elements have the dual modular pair property if the second is an atom. (Contributed by NM, 6-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion atdmd2 ( ( 𝐴C𝐵 ∈ HAtoms ) → 𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 atdmd ( ( 𝐵 ∈ HAtoms ∧ 𝐴C ) → 𝐵 𝑀* 𝐴 )
2 1 ancoms ( ( 𝐴C𝐵 ∈ HAtoms ) → 𝐵 𝑀* 𝐴 )
3 atelch ( 𝐵 ∈ HAtoms → 𝐵C )
4 dmdsym ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵𝐵 𝑀* 𝐴 ) )
5 3 4 sylan2 ( ( 𝐴C𝐵 ∈ HAtoms ) → ( 𝐴 𝑀* 𝐵𝐵 𝑀* 𝐴 ) )
6 2 5 mpbird ( ( 𝐴C𝐵 ∈ HAtoms ) → 𝐴 𝑀* 𝐵 )