Metamath Proof Explorer


Theorem atdmd

Description: Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of MaedaMaeda p. 31. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atdmd ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → 𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 cvp ( ( 𝐵C𝐴 ∈ HAtoms ) → ( ( 𝐵𝐴 ) = 0𝐵 ( 𝐵 𝐴 ) ) )
2 atelch ( 𝐴 ∈ HAtoms → 𝐴C )
3 chjcom ( ( 𝐵C𝐴C ) → ( 𝐵 𝐴 ) = ( 𝐴 𝐵 ) )
4 2 3 sylan2 ( ( 𝐵C𝐴 ∈ HAtoms ) → ( 𝐵 𝐴 ) = ( 𝐴 𝐵 ) )
5 4 breq2d ( ( 𝐵C𝐴 ∈ HAtoms ) → ( 𝐵 ( 𝐵 𝐴 ) ↔ 𝐵 ( 𝐴 𝐵 ) ) )
6 1 5 bitrd ( ( 𝐵C𝐴 ∈ HAtoms ) → ( ( 𝐵𝐴 ) = 0𝐵 ( 𝐴 𝐵 ) ) )
7 6 ancoms ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( ( 𝐵𝐴 ) = 0𝐵 ( 𝐴 𝐵 ) ) )
8 cvdmd ( ( 𝐴C𝐵C𝐵 ( 𝐴 𝐵 ) ) → 𝐴 𝑀* 𝐵 )
9 8 3expia ( ( 𝐴C𝐵C ) → ( 𝐵 ( 𝐴 𝐵 ) → 𝐴 𝑀* 𝐵 ) )
10 2 9 sylan ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( 𝐵 ( 𝐴 𝐵 ) → 𝐴 𝑀* 𝐵 ) )
11 7 10 sylbid ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( ( 𝐵𝐴 ) = 0𝐴 𝑀* 𝐵 ) )
12 atnssm0 ( ( 𝐵C𝐴 ∈ HAtoms ) → ( ¬ 𝐴𝐵 ↔ ( 𝐵𝐴 ) = 0 ) )
13 12 ancoms ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( ¬ 𝐴𝐵 ↔ ( 𝐵𝐴 ) = 0 ) )
14 13 con1bid ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( ¬ ( 𝐵𝐴 ) = 0𝐴𝐵 ) )
15 ssdmd1 ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐴 𝑀* 𝐵 )
16 15 3expia ( ( 𝐴C𝐵C ) → ( 𝐴𝐵𝐴 𝑀* 𝐵 ) )
17 2 16 sylan ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( 𝐴𝐵𝐴 𝑀* 𝐵 ) )
18 14 17 sylbid ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → ( ¬ ( 𝐵𝐴 ) = 0𝐴 𝑀* 𝐵 ) )
19 11 18 pm2.61d ( ( 𝐴 ∈ HAtoms ∧ 𝐵C ) → 𝐴 𝑀* 𝐵 )