Description: The domain of the membership relation is the universal class. (Contributed by Scott Fenton, 27-Oct-2010) (Proof shortened by BJ, 26-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmep | |- dom _E = _V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqv | |- ( dom _E = _V <-> A. x x e. dom _E ) | |
| 2 | el | |- E. y x e. y | |
| 3 | epel | |- ( x _E y <-> x e. y ) | |
| 4 | 3 | exbii | |- ( E. y x _E y <-> E. y x e. y ) | 
| 5 | 2 4 | mpbir | |- E. y x _E y | 
| 6 | vex | |- x e. _V | |
| 7 | 6 | eldm | |- ( x e. dom _E <-> E. y x _E y ) | 
| 8 | 5 7 | mpbir | |- x e. dom _E | 
| 9 | 1 8 | mpgbir | |- dom _E = _V |