Metamath Proof Explorer


Theorem dmiin

Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion dmiin
|- dom |^|_ x e. A B C_ |^|_ x e. A dom B

Proof

Step Hyp Ref Expression
1 nfii1
 |-  F/_ x |^|_ x e. A B
2 1 nfdm
 |-  F/_ x dom |^|_ x e. A B
3 2 ssiinf
 |-  ( dom |^|_ x e. A B C_ |^|_ x e. A dom B <-> A. x e. A dom |^|_ x e. A B C_ dom B )
4 iinss2
 |-  ( x e. A -> |^|_ x e. A B C_ B )
5 dmss
 |-  ( |^|_ x e. A B C_ B -> dom |^|_ x e. A B C_ dom B )
6 4 5 syl
 |-  ( x e. A -> dom |^|_ x e. A B C_ dom B )
7 3 6 mprgbir
 |-  dom |^|_ x e. A B C_ |^|_ x e. A dom B