Metamath Proof Explorer


Theorem dmiin

Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof

Step Hyp Ref Expression
1 nfii1 𝑥 𝑥𝐴 𝐵
2 1 nfdm 𝑥 dom 𝑥𝐴 𝐵
3 2 ssiinf ( dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀ 𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵 )
4 iinss2 ( 𝑥𝐴 𝑥𝐴 𝐵𝐵 )
5 dmss ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵 )
6 4 5 syl ( 𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵 )
7 3 6 mprgbir dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵