Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
dmiin
Next ⟩
rnopab
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmiin
Description:
Domain of an intersection.
(Contributed by
FL
, 15-Oct-2012)
Ref
Expression
Assertion
dmiin
⊢
dom
⁡
⋂
x
∈
A
B
⊆
⋂
x
∈
A
dom
⁡
B
Proof
Step
Hyp
Ref
Expression
1
nfii1
⊢
Ⅎ
_
x
⋂
x
∈
A
B
2
1
nfdm
⊢
Ⅎ
_
x
dom
⁡
⋂
x
∈
A
B
3
2
ssiinf
⊢
dom
⁡
⋂
x
∈
A
B
⊆
⋂
x
∈
A
dom
⁡
B
↔
∀
x
∈
A
dom
⁡
⋂
x
∈
A
B
⊆
dom
⁡
B
4
iinss2
⊢
x
∈
A
→
⋂
x
∈
A
B
⊆
B
5
dmss
⊢
⋂
x
∈
A
B
⊆
B
→
dom
⁡
⋂
x
∈
A
B
⊆
dom
⁡
B
6
4
5
syl
⊢
x
∈
A
→
dom
⁡
⋂
x
∈
A
B
⊆
dom
⁡
B
7
3
6
mprgbir
⊢
dom
⁡
⋂
x
∈
A
B
⊆
⋂
x
∈
A
dom
⁡
B