Metamath Proof Explorer


Theorem dmiin

Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion dmiin dom x A B x A dom B

Proof

Step Hyp Ref Expression
1 nfii1 _ x x A B
2 1 nfdm _ x dom x A B
3 2 ssiinf dom x A B x A dom B x A dom x A B dom B
4 iinss2 x A x A B B
5 dmss x A B B dom x A B dom B
6 4 5 syl x A dom x A B dom B
7 3 6 mprgbir dom x A B x A dom B