Metamath Proof Explorer


Theorem dmiin

Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion dmiin domxABxAdomB

Proof

Step Hyp Ref Expression
1 nfii1 _xxAB
2 1 nfdm _xdomxAB
3 2 ssiinf domxABxAdomBxAdomxABdomB
4 iinss2 xAxABB
5 dmss xABBdomxABdomB
6 4 5 syl xAdomxABdomB
7 3 6 mprgbir domxABxAdomB