| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmmcand.a |
|- ( ph -> A e. CC ) |
| 2 |
|
dmmcand.b |
|- ( ph -> B e. CC ) |
| 3 |
|
dmmcand.c |
|- ( ph -> C e. CC ) |
| 4 |
|
dmmcand.bn0 |
|- ( ph -> B =/= 0 ) |
| 5 |
2 3
|
mulcld |
|- ( ph -> ( B x. C ) e. CC ) |
| 6 |
1 2 5 4
|
div32d |
|- ( ph -> ( ( A / B ) x. ( B x. C ) ) = ( A x. ( ( B x. C ) / B ) ) ) |
| 7 |
3 2 4
|
divcan3d |
|- ( ph -> ( ( B x. C ) / B ) = C ) |
| 8 |
7
|
oveq2d |
|- ( ph -> ( A x. ( ( B x. C ) / B ) ) = ( A x. C ) ) |
| 9 |
|
eqidd |
|- ( ph -> ( A x. C ) = ( A x. C ) ) |
| 10 |
6 8 9
|
3eqtrd |
|- ( ph -> ( ( A / B ) x. ( B x. C ) ) = ( A x. C ) ) |