Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem8.1 |
|- ( ph -> A e. RR ) |
2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
3 |
2
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
4 |
1 3
|
jca |
|- ( ph -> ( A e. RR /\ ( 1 / 2 ) e. RR ) ) |
5 |
|
simpl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> A e. RR ) |
6 |
2
|
a1i |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( 1 / 2 ) e. RR ) |
7 |
5 6
|
readdcld |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
8 |
4 7
|
syl |
|- ( ph -> ( A + ( 1 / 2 ) ) e. RR ) |
9 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
10 |
8 9
|
syl |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
11 |
1 10
|
resubcld |
|- ( ph -> ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) e. RR ) |
12 |
1
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
13 |
11
|
leabsd |
|- ( ph -> ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) <_ ( abs ` ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) ) ) |
14 |
1
|
recnd |
|- ( ph -> A e. CC ) |
15 |
10
|
recnd |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
16 |
14 15
|
abssubd |
|- ( ph -> ( abs ` ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
17 |
13 16
|
breqtrd |
|- ( ph -> ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) <_ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
18 |
11 12 3 17
|
lesub2dd |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) <_ ( ( 1 / 2 ) - ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) ) ) |
19 |
3
|
recnd |
|- ( ph -> ( 1 / 2 ) e. CC ) |
20 |
19 14 15
|
subsub3d |
|- ( ph -> ( ( 1 / 2 ) - ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) ) = ( ( ( 1 / 2 ) + ( |_ ` ( A + ( 1 / 2 ) ) ) ) - A ) ) |
21 |
19 15
|
addcomd |
|- ( ph -> ( ( 1 / 2 ) + ( |_ ` ( A + ( 1 / 2 ) ) ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
22 |
21
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) + ( |_ ` ( A + ( 1 / 2 ) ) ) ) - A ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) |
23 |
20 22
|
eqtrd |
|- ( ph -> ( ( 1 / 2 ) - ( A - ( |_ ` ( A + ( 1 / 2 ) ) ) ) ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) |
24 |
18 23
|
breqtrd |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) <_ ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) |