Metamath Proof Explorer


Theorem dnicld1

Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypothesis dnicld1.1
|- ( ph -> A e. RR )
Assertion dnicld1
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR )

Proof

Step Hyp Ref Expression
1 dnicld1.1
 |-  ( ph -> A e. RR )
2 halfre
 |-  ( 1 / 2 ) e. RR
3 2 a1i
 |-  ( ph -> ( 1 / 2 ) e. RR )
4 1 3 jca
 |-  ( ph -> ( A e. RR /\ ( 1 / 2 ) e. RR ) )
5 readdcl
 |-  ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR )
6 4 5 syl
 |-  ( ph -> ( A + ( 1 / 2 ) ) e. RR )
7 reflcl
 |-  ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR )
8 6 7 syl
 |-  ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR )
9 8 recnd
 |-  ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC )
10 1 recnd
 |-  ( ph -> A e. CC )
11 9 10 subcld
 |-  ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. CC )
12 11 abscld
 |-  ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR )