Step |
Hyp |
Ref |
Expression |
1 |
|
dnicld1.1 |
|- ( ph -> A e. RR ) |
2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
3 |
2
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
4 |
1 3
|
jca |
|- ( ph -> ( A e. RR /\ ( 1 / 2 ) e. RR ) ) |
5 |
|
readdcl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
6 |
4 5
|
syl |
|- ( ph -> ( A + ( 1 / 2 ) ) e. RR ) |
7 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
8 |
6 7
|
syl |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
9 |
8
|
recnd |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
10 |
1
|
recnd |
|- ( ph -> A e. CC ) |
11 |
9 10
|
subcld |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. CC ) |
12 |
11
|
abscld |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |