Step |
Hyp |
Ref |
Expression |
1 |
|
dnicld1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
4 |
1 3
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) ) |
5 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
7 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ) |
10 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
11 |
9 10
|
subcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ∈ ℂ ) |
12 |
11
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) |