Metamath Proof Explorer


Theorem dnicld2

Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnicld2.1 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
dnicld2.2 ( 𝜑𝐴 ∈ ℝ )
Assertion dnicld2 ( 𝜑 → ( 𝑇𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 dnicld2.1 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 dnicld2.2 ( 𝜑𝐴 ∈ ℝ )
3 1 dnival ( 𝐴 ∈ ℝ → ( 𝑇𝐴 ) = ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) )
4 2 3 syl ( 𝜑 → ( 𝑇𝐴 ) = ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) )
5 2 dnicld1 ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ )
6 4 5 eqeltrd ( 𝜑 → ( 𝑇𝐴 ) ∈ ℝ )