Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnicld2.1 | ⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) | |
| dnicld2.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| Assertion | dnicld2 | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnicld2.1 | ⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) | |
| 2 | dnicld2.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | 1 | dnival | ⊢ ( 𝐴 ∈ ℝ → ( 𝑇 ‘ 𝐴 ) = ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐴 ) = ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |
| 5 | 2 | dnicld1 | ⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) |
| 6 | 4 5 | eqeltrd | ⊢ ( 𝜑 → ( 𝑇 ‘ 𝐴 ) ∈ ℝ ) |