Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dnicld2.1 | |- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
dnicld2.2 | |- ( ph -> A e. RR ) |
||
Assertion | dnicld2 | |- ( ph -> ( T ` A ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnicld2.1 | |- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
2 | dnicld2.2 | |- ( ph -> A e. RR ) |
|
3 | 1 | dnival | |- ( A e. RR -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
4 | 2 3 | syl | |- ( ph -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
5 | 2 | dnicld1 | |- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
6 | 4 5 | eqeltrd | |- ( ph -> ( T ` A ) e. RR ) |