Metamath Proof Explorer


Theorem dnicld2

Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnicld2.1
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
dnicld2.2
|- ( ph -> A e. RR )
Assertion dnicld2
|- ( ph -> ( T ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 dnicld2.1
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 dnicld2.2
 |-  ( ph -> A e. RR )
3 1 dnival
 |-  ( A e. RR -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) )
4 2 3 syl
 |-  ( ph -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) )
5 2 dnicld1
 |-  ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR )
6 4 5 eqeltrd
 |-  ( ph -> ( T ` A ) e. RR )