Step |
Hyp |
Ref |
Expression |
1 |
|
dnival.1 |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
fvoveq1 |
|- ( x = A -> ( |_ ` ( x + ( 1 / 2 ) ) ) = ( |_ ` ( A + ( 1 / 2 ) ) ) ) |
3 |
|
id |
|- ( x = A -> x = A ) |
4 |
2 3
|
oveq12d |
|- ( x = A -> ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) |
5 |
4
|
fveq2d |
|- ( x = A -> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
6 |
|
fvex |
|- ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. _V |
7 |
5 1 6
|
fvmpt |
|- ( A e. RR -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |