Step |
Hyp |
Ref |
Expression |
1 |
|
dnival.1 |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) |
3 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
4 |
2 3
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) = ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |
6 |
|
fvex |
⊢ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ V |
7 |
5 1 6
|
fvmpt |
⊢ ( 𝐴 ∈ ℝ → ( 𝑇 ‘ 𝐴 ) = ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) |