Metamath Proof Explorer


Theorem dnicld2

Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnicld2.1 T = x x + 1 2 x
dnicld2.2 φ A
Assertion dnicld2 φ T A

Proof

Step Hyp Ref Expression
1 dnicld2.1 T = x x + 1 2 x
2 dnicld2.2 φ A
3 1 dnival A T A = A + 1 2 A
4 2 3 syl φ T A = A + 1 2 A
5 2 dnicld1 φ A + 1 2 A
6 4 5 eqeltrd φ T A