Metamath Proof Explorer


Theorem dnicld1

Description: Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypothesis dnicld1.1 φ A
Assertion dnicld1 φ A + 1 2 A

Proof

Step Hyp Ref Expression
1 dnicld1.1 φ A
2 halfre 1 2
3 2 a1i φ 1 2
4 1 3 jca φ A 1 2
5 readdcl A 1 2 A + 1 2
6 4 5 syl φ A + 1 2
7 reflcl A + 1 2 A + 1 2
8 6 7 syl φ A + 1 2
9 8 recnd φ A + 1 2
10 1 recnd φ A
11 9 10 subcld φ A + 1 2 A
12 11 abscld φ A + 1 2 A