Metamath Proof Explorer


Theorem dnif

Description: The "distance to nearest integer" function is a function. (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypothesis dnif.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
Assertion dnif 𝑇 : ℝ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 dnif.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 id ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ )
3 2 dnicld1 ( 𝑥 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ∈ ℝ )
4 1 3 fmpti 𝑇 : ℝ ⟶ ℝ