Metamath Proof Explorer
Description: The "distance to nearest integer" function is a function. (Contributed by Asger C. Ipsen, 4-Apr-2021)
|
|
Ref |
Expression |
|
Hypothesis |
dnif.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
|
Assertion |
dnif |
⊢ 𝑇 : ℝ ⟶ ℝ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dnif.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
id |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) |
3 |
2
|
dnicld1 |
⊢ ( 𝑥 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ∈ ℝ ) |
4 |
1 3
|
fmpti |
⊢ 𝑇 : ℝ ⟶ ℝ |