Metamath Proof Explorer


Theorem dnibndlem8

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypothesis dnibndlem8.1 φA
Assertion dnibndlem8 φ12A+12AA+12+12-A

Proof

Step Hyp Ref Expression
1 dnibndlem8.1 φA
2 halfre 12
3 2 a1i φ12
4 1 3 jca φA12
5 simpl A12A
6 2 a1i A1212
7 5 6 readdcld A12A+12
8 4 7 syl φA+12
9 reflcl A+12A+12
10 8 9 syl φA+12
11 1 10 resubcld φAA+12
12 1 dnicld1 φA+12A
13 11 leabsd φAA+12AA+12
14 1 recnd φA
15 10 recnd φA+12
16 14 15 abssubd φAA+12=A+12A
17 13 16 breqtrd φAA+12A+12A
18 11 12 3 17 lesub2dd φ12A+12A12AA+12
19 3 recnd φ12
20 19 14 15 subsub3d φ12AA+12=12+A+12-A
21 19 15 addcomd φ12+A+12=A+12+12
22 21 oveq1d φ12+A+12-A=A+12+12-A
23 20 22 eqtrd φ12AA+12=A+12+12-A
24 18 23 breqtrd φ12A+12AA+12+12-A