Metamath Proof Explorer


Theorem dnibndlem9

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem9.1 T = x x + 1 2 x
dnibndlem9.2 φ A
dnibndlem9.3 φ B
dnibndlem9.4 φ B + 1 2 = A + 1 2 + 1
Assertion dnibndlem9 φ T B T A B A

Proof

Step Hyp Ref Expression
1 dnibndlem9.1 T = x x + 1 2 x
2 dnibndlem9.2 φ A
3 dnibndlem9.3 φ B
4 dnibndlem9.4 φ B + 1 2 = A + 1 2 + 1
5 3 dnicld1 φ B + 1 2 B
6 5 recnd φ B + 1 2 B
7 2 dnicld1 φ A + 1 2 A
8 7 recnd φ A + 1 2 A
9 6 8 subcld φ B + 1 2 B A + 1 2 A
10 9 abscld φ B + 1 2 B A + 1 2 A
11 halfre 1 2
12 11 a1i φ 1 2
13 12 5 jca φ 1 2 B + 1 2 B
14 resubcl 1 2 B + 1 2 B 1 2 B + 1 2 B
15 13 14 syl φ 1 2 B + 1 2 B
16 12 7 jca φ 1 2 A + 1 2 A
17 resubcl 1 2 A + 1 2 A 1 2 A + 1 2 A
18 16 17 syl φ 1 2 A + 1 2 A
19 15 18 readdcld φ 1 2 B + 1 2 B + 1 2 - A + 1 2 A
20 3 recnd φ B
21 3 12 readdcld φ B + 1 2
22 reflcl B + 1 2 B + 1 2
23 21 22 syl φ B + 1 2
24 23 recnd φ B + 1 2
25 12 recnd φ 1 2
26 24 25 subcld φ B + 1 2 1 2
27 20 26 subcld φ B B + 1 2 1 2
28 2 12 readdcld φ A + 1 2
29 reflcl A + 1 2 A + 1 2
30 28 29 syl φ A + 1 2
31 30 recnd φ A + 1 2
32 31 25 addcld φ A + 1 2 + 1 2
33 2 recnd φ A
34 32 33 subcld φ A + 1 2 + 1 2 - A
35 27 34 addcld φ B B + 1 2 1 2 + A + 1 2 + 1 2 - A
36 35 abscld φ B B + 1 2 1 2 + A + 1 2 + 1 2 - A
37 2 3 dnibndlem6 φ B + 1 2 B A + 1 2 A 1 2 B + 1 2 B + 1 2 - A + 1 2 A
38 23 12 jca φ B + 1 2 1 2
39 resubcl B + 1 2 1 2 B + 1 2 1 2
40 38 39 syl φ B + 1 2 1 2
41 3 40 jca φ B B + 1 2 1 2
42 resubcl B B + 1 2 1 2 B B + 1 2 1 2
43 41 42 syl φ B B + 1 2 1 2
44 30 12 readdcld φ A + 1 2 + 1 2
45 44 2 jca φ A + 1 2 + 1 2 A
46 resubcl A + 1 2 + 1 2 A A + 1 2 + 1 2 - A
47 45 46 syl φ A + 1 2 + 1 2 - A
48 3 dnibndlem7 φ 1 2 B + 1 2 B B B + 1 2 1 2
49 2 dnibndlem8 φ 1 2 A + 1 2 A A + 1 2 + 1 2 - A
50 15 18 43 47 48 49 le2addd φ 1 2 B + 1 2 B + 1 2 - A + 1 2 A B B + 1 2 1 2 + A + 1 2 + 1 2 - A
51 43 47 readdcld φ B B + 1 2 1 2 + A + 1 2 + 1 2 - A
52 dnibndlem4 B 0 B B + 1 2 1 2
53 3 52 syl φ 0 B B + 1 2 1 2
54 0red φ 0
55 dnibndlem5 A 0 < A + 1 2 + 1 2 - A
56 2 55 syl φ 0 < A + 1 2 + 1 2 - A
57 54 47 56 ltled φ 0 A + 1 2 + 1 2 - A
58 43 47 53 57 addge0d φ 0 B B + 1 2 1 2 + A + 1 2 + 1 2 - A
59 51 58 absidd φ B B + 1 2 1 2 + A + 1 2 + 1 2 - A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A
60 59 eqcomd φ B B + 1 2 1 2 + A + 1 2 + 1 2 - A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A
61 50 60 breqtrd φ 1 2 B + 1 2 B + 1 2 - A + 1 2 A B B + 1 2 1 2 + A + 1 2 + 1 2 - A
62 10 19 36 37 61 letrd φ B + 1 2 B A + 1 2 A B B + 1 2 1 2 + A + 1 2 + 1 2 - A
63 1 2 3 4 dnibndlem3 φ B A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A
64 63 eqcomd φ B B + 1 2 1 2 + A + 1 2 + 1 2 - A = B A
65 62 64 breqtrd φ B + 1 2 B A + 1 2 A B A
66 1 2 3 dnibndlem1 φ T B T A B A B + 1 2 B A + 1 2 A B A
67 65 66 mpbird φ T B T A B A