Metamath Proof Explorer


Theorem dnibndlem4

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Assertion dnibndlem4 B 0 B B + 1 2 1 2

Proof

Step Hyp Ref Expression
1 id B B
2 halfre 1 2
3 2 a1i B 1 2
4 1 3 readdcld B B + 1 2
5 flle B + 1 2 B + 1 2 B + 1 2
6 4 5 syl B B + 1 2 B + 1 2
7 reflcl B + 1 2 B + 1 2
8 4 7 syl B B + 1 2
9 8 3 1 lesubaddd B B + 1 2 1 2 B B + 1 2 B + 1 2
10 6 9 mpbird B B + 1 2 1 2 B
11 8 3 jca B B + 1 2 1 2
12 resubcl B + 1 2 1 2 B + 1 2 1 2
13 11 12 syl B B + 1 2 1 2
14 1 13 subge0d B 0 B B + 1 2 1 2 B + 1 2 1 2 B
15 10 14 mpbird B 0 B B + 1 2 1 2