Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Asger C. Ipsen
Continuous nowhere differentiable functions
dnibndlem4
Next ⟩
dnibndlem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
dnibndlem4
Description:
Lemma for
dnibnd
.
(Contributed by
Asger C. Ipsen
, 4-Apr-2021)
Ref
Expression
Assertion
dnibndlem4
⊢
B
∈
ℝ
→
0
≤
B
−
B
+
1
2
−
1
2
Proof
Step
Hyp
Ref
Expression
1
id
⊢
B
∈
ℝ
→
B
∈
ℝ
2
halfre
⊢
1
2
∈
ℝ
3
2
a1i
⊢
B
∈
ℝ
→
1
2
∈
ℝ
4
1
3
readdcld
⊢
B
∈
ℝ
→
B
+
1
2
∈
ℝ
5
flle
⊢
B
+
1
2
∈
ℝ
→
B
+
1
2
≤
B
+
1
2
6
4
5
syl
⊢
B
∈
ℝ
→
B
+
1
2
≤
B
+
1
2
7
reflcl
⊢
B
+
1
2
∈
ℝ
→
B
+
1
2
∈
ℝ
8
4
7
syl
⊢
B
∈
ℝ
→
B
+
1
2
∈
ℝ
9
8
3
1
lesubaddd
⊢
B
∈
ℝ
→
B
+
1
2
−
1
2
≤
B
↔
B
+
1
2
≤
B
+
1
2
10
6
9
mpbird
⊢
B
∈
ℝ
→
B
+
1
2
−
1
2
≤
B
11
8
3
jca
⊢
B
∈
ℝ
→
B
+
1
2
∈
ℝ
∧
1
2
∈
ℝ
12
resubcl
⊢
B
+
1
2
∈
ℝ
∧
1
2
∈
ℝ
→
B
+
1
2
−
1
2
∈
ℝ
13
11
12
syl
⊢
B
∈
ℝ
→
B
+
1
2
−
1
2
∈
ℝ
14
1
13
subge0d
⊢
B
∈
ℝ
→
0
≤
B
−
B
+
1
2
−
1
2
↔
B
+
1
2
−
1
2
≤
B
15
10
14
mpbird
⊢
B
∈
ℝ
→
0
≤
B
−
B
+
1
2
−
1
2